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Abstract
Obesity poses a significant risk factor for the onset of metabolic syndrome with allied complications, wherein mesenchymal 
stem cell therapy is seen as a promising treatment for obesity-induced metabolic syndrome. In the present study, we aim to 
explore the beneficial effects of the human placental mesenchymal stromal cells (P-MSCs) on obesity-associated insulin 
resistance (IR) including inflammation. To understand this, we have analyzed the peripheral blood glucose, serum insulin 
levels by ELISA, and the glucose uptake capacity of skeletal muscle by a 2-NBDG assay using flow cytometry in WNIN/
GR-Ob rats treated with and without P-MSCs. Also, we have studied insulin signaling and cytokine profile in the skeletal 
muscle by western blotting, dot blotting, and Multiplex-ELISA techniques. The skeletal muscle of WNIN/GR-Ob rats dem-
onstrates dysregulation of cytokines, altered glucose uptake vis-a-vis insulin signaling. However, P-MSCs’ treatment was 
effective in WNIN/GR-Ob rats as compared to its control, to restore HOMA-IR, re-establishes dysregulated cytokines and 
PI3K-Akt pathway in addition to enhanced Glut4 expression and glucose uptake studied in skeletal muscle. Overall, our 
data advocate the beneficial effects of P-MSCs to ameliorate inflammatory milieu, improve insulin sensitivity, and normal-
ize glucose homeostasis underlining the Ob-T2D conditions, and we attribute for immunomodulatory, paracrine, autocrine, 
and multipotent functions of P-MSCs.

Keywords  Human placental mesenchymal stromal cells · WNIN/GR-Ob rats · Skeletal muscle tissue · Cytokines · Insulin 
signaling · Glut4

Introduction

Metabolic syndrome (MS), constituting a triad of obesity, 
diabetes, and cardiovascular disease (CVD), has been the 
leading cause of death globally, both in developed and 
developing countries [1]. Among various causative factors, 
changes in lifestyle, food habits, environmental, genetic, 
and, more recently, epigenetic alterations are critical factors 
in inducing MS. In the etiology of Obesity-Induced Type2 
Diabetes, one progresses from regular to impaired glucose 
tolerance (IGT) toT2D.

WNIN/GR-Ob rat model (WNIN mutant Obese rats) 
used in the present study has been indigenously developed 
at ICMR-NIN in the year 2011. This strain is maintained 
through the mating of fertile heterozygous carriers (±) 
and is named WNIN/Ob to indicate its origin. These rats 
maintain a strict Mendelian ratio during their propagation, 
wherein one-fourth of the progeny (recessive phenotype) is 
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observed in each cross between the WNIN/Ob and WNIN/
GR [2–4]. WNIN/GR-Ob rats closely resemble pre-clinical 
/clinical obese diabetic subjects presenting with metabolic 
dysfunctions like IGT, insulin resistance (IR), decrease in 
lean body mass, osteoarthritis, hypertriglyceridemia, as well 
as hypercholesterolemia [2, 5–8]. The impetus obtained from 
our earlier studies using WNIN/GR-Ob rats presented with 
several pathophysiological changes like inflammation, IGT, 
altered glucose homeostasis, adipocyte hypertrophy, and 
β-cell exhaustion resulting in reduced insulin sensitivity seen 
with age [2, 5–7, 9, 10].

Studies show that accumulation of excess free fatty acid 
(FFAs) under obese conditions also exacerbates for the 
inflammatory milieu in the insulin target tissue like skeletal 
muscle [11], and also reported with a high-fat-rich diet [12]. 
Interestingly, IR in adipose tissue presents with increased 
macrophage infiltration as compared to skeletal muscle, 
where macrophage infiltration is relatively lesser in individu-
als with IR a key indicator of inflammation [13, 14]. Never-
theless, it appears that cytokines coming from other organs 
(adipose tissue and liver) may have an important impact on 
the development of IR in the muscle, and show impaired 
IKKβ signaling, and up-regulates several inflammatory 
genes (NF-κB, TNF-α, IL-6, and IL-1β) to alter GLUT4 
translocation and glucose uptake [15, 16]. These alterations 
in muscle may be associated with altered activation of PI3K, 
possibly due to elevations in PKCθ [17–19]. Interestingly, an 
acquired loss of PI3K activation in muscle is also seen as a 
result of a high-fat diet. Leptin increases fatty acid oxidation 
and decreases esterification in skeletal muscle [20, 21]. It has 
also been shown that in skeletal muscle of T2D subjects, the 
insulin-stimulated Tyr phosphorylation of Insulin substrate 
receptor 1 is impaired by high levels of FFAs, which has 
not been evidenced in normal or in non-obese T2D [22–24]. 
This impairment in the signaling mechanism leads to defec-
tive or altered GLTU4 translocation to the cell membrane. 
Additionally, Akt activation is also impaired in T2D patients 
[22]. This appears to be due, at least in part, to the regulation 
of the expression of genes involved in fatty acid metabolism 
and may be exerted directly at the level of the target tissues, 
as the effects are seen in muscle and islets exposed to leptin 
ex vivo. However, enhanced signaling through the TLR-4 
receptor by saturated fatty acids can reduce fatty acid oxida-
tion of the lipids in the muscle [25, 26].

It is encouraging from the recent studies that mesenchy-
mal stromal cell (MSC) therapy shows promising results for 
the treatment of T2D and associated complications [27–29]. 
MSC therapy improves pancreas regeneration, decreases IR, 
and activates progenitors to convert into β-cells [30, 31]. 
Also, our recent studies of Kotikalapudi et al., 2021 show 
that the P-MSCs injection into the right thigh region of the 
Obese rats decreased significantly the inflammation at a 
systemic level, i.e., both at serum and tissue, and showed 

that these changes impact overall glucose homeostasis at the 
insulin-sensitive targets, i.e., adipose tissue [32]. Recently, 
Chen et al. 2020 have shown the efficacy of Human umbili-
cal cord mesenchymal stem cells (HUC-MSCs) as an alter-
native therapy to the conventional treatment of diabetes [33]. 
Also, this study demonstrated the importance of the intra-
muscular injection of HUC-MSCs, and showed beneficial 
effects of MSCs in ameliorating the imbalance between the 
PI3K/Akt and ERK/MAPK signaling pathways [33].

However, there is a lack of detailed studies emphasizing 
how MSC therapy modulates cytokines and insulin sign-
aling, specifically in skeletal muscle tissues, in obesity-
induced T2D complications. We hypothesize that P-MSCs 
administered to skeletal muscle would negate the IR, and 
inflammation by activating Glut4 transportation to facilitate 
better insulin sensitivity and efflux. In the present study, we 
show that intramuscular injection of P-MSCs restores glu-
cose uptake in the skeletal muscle of WNIN/GR-Ob rats, 
Our data also reinstate the beneficial effects of P-MSCs and 
for better cross talk to enhance peripheral blood glucose 
clearance and restore cytokine profile comparable to Con-
trols in the skeletal muscle of WNIN/GR-Ob rats and regu-
lates insulin signaling. A systemic study of the therapeutic 
effects of P-MSCs in the treatment of IR would facilitate our 
understanding of the mechanism(s) and its potential clinical 
application in the management of T2D.

Materials and methods

Isolation, expansion, and characterization of human 
P‑MSCs

The chorionic plate of the placenta was exposed by 
stripping off the amnion. This chorionic plate was then 
washed with phosphate buffer saline (PBS) pH 7.2 to 
remove traces of cord blood. This chorionic plate of the 
placenta was subjected to 0.25% trypsin–EDTA digestion 
for 30 min at 37 °C. Isolation was carried out as previ-
ously described [34, 35]. Human P-MSCs were maintained 
in DMEM/F12 + 10% FBS and antibiotics (Pen-Strep, 
Amphotericin B, and Kanamycin) till confluence at 37 °C, 
5% CO2, and 95% relative humidity in a CO2 incubator. 
Media were changed every other day for all the cultures 
till confluence (70–80%), trypsinized using 0.25% EDTA 
(passaged), and seeded into fresh tissue culture flasks in 
a split ratio of 1:3. Cells were maintained in culture for 
further analysis. For chondrogenic and osteogenic differ-
entiation, 1 × 106 human P-MSCs/cm2 (passage 3) were 
plated onto tissue culture flasks. Differentiations were 
induced by replacing the growth medium (DMEM-F12) 
with a chondrogenic, osteogenic, differentiation bullet 
kit (C-28012, Sigma-Aldrich USA, and SCR028, Merck 
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Millipore, USA, respectively) as per the manufacturer's 
instructions. Chondrogenesis was confirmed using Alcian 
Blue staining. The osteogenesis was confirmed by stain-
ing with Alizarin Red S. Adipogenic differentiation was 
briefly evaluated by adipogenic induction medium and adi-
pogenic maintenance medium (Merck Millipore SCR020, 
USA), and adipogenesis was confirmed using Oil Red O 
Staining. All the studies have been carried out using the 
third passage of P-MSCs, which has also been character-
ized for CD-133, Stro-1, CD90, CD105, CD73, and CD34 
cellular markers for P-MSCs.

Animal model and study design

We confirm that all methods were carried out in accordance 
with guidelines and regulations for using animals and all 
the animal studies were carried out in compliance with the 
ARRIVE guidelines. Six-month-old female WNIN/Control 
and WNIN/GR-Ob (Ob-T2D) rats from the inbred strain 
from ICMR—National Institute of Nutrition (NIN) were 
used (n = 24) for the experiments. The rats were divided 
into four groups: WNIN/Control (n = 6), WNIN/Control 
injected with P-MSCs (n = 6), WNIN/GR-Ob (Ob-T2D) 
rats (n = 6), and WNIN/GR-Ob (Ob-T2D) rats injected with 
P-MSCs (n = 6). All the animals received standardized chow 
diet nutrients %/100 g: carbohydrate 48.8, protein 21, fat 3, 
calcium 0.8, phosphorus 0.4, fiber 5, moisture 13, ash 8, 
and total energy (kcal/100 g) 306.20 g during the course 
of the experiments, and the experiments were done in 
duplicates. P-MSCs (1 × 106) were suspended in 100 µl of 
1 × phosphate-buffered saline (1 × PBS) and were injected 
intramuscularly into the right thigh of the rats, one-shot/per 
week × 3. The control rats received an equivalent of 100 µl 
of 1 × PBS. The biochemical, cellular, and molecular studies 
were conducted at the end of 7 weeks after the 3rd P-MSCs 
injection unless specified.

Oral glucose and insulin tolerance test (GTT/ITT)

GTT and ITT assays were performed as described previ-
ously [36]. At the end of the 7th-week post-injection, we 
performed GTT and ITT after fasting the animals for 8–10 h. 
For GTT, the rats were infused with a 20% glucose solution 
(2 g of glucose/kg of body mass), and for ITT, we followed 
the method [37] of using the formula volume of IP glucose 
injection (μl) = 10 × bodyweight (g) and 0.75 IU of insulin/g 
body mass. The blood glucose levels were measured at 15, 
30, 60, and 120 min after glucose and insulin injection. Glu-
cose levels were measured using an ACCU-CHEK Advan-
tage Glucometer (Roche Diagnostics GmbH, Mannheim, 
Germany).

Biochemical analysis

The animals were deprived of food before autopsy and sac-
rificed. Blood was collected by retro-orbital bleeding into 
the serum vacutainer. Serum was prepared by centrifuging 
the blood samples at 1500 rpm for 20 min at RT and stored 
at − 80 °C till use. At the end of the experimental duration, 
blood was collected under fasting conditions. Serum was 
separated and all parameters were estimated using a semi 
Bioauto analyzer (ACE Alera, USA). The biochemical 
studies were conducted before, and at the end of 7 weeks 
after the 3rd P-MSCs’ injection.

Enzyme‑linked immunosorbent assay

Serum insulin concentration was measured using specific 
ELISA kits (Mercodia, Sweden). HOMA-IR was calcu-
lated as described previously [38], and following equations 
were used to calculate the HOMA-IR index and HOMA-β 
index (HBCI): HOMA-IR index = (FBG [mmol/l] × FINS 
[units/l])/22.5) and HOMA-β = (20 × FINS [units/l])/(FBG 
[mmol/l] − 3.5).

Real‑time quantitative PCR (cytokines’ markers)

The qRT-PCR analysis was performed as described ear-
lier [39] with the following modifications. Soleus muscle 
was used for total RNA extraction using the Trizol reagent 
(DSS-Takara Biosciences, India), and cDNA synthesis 
was performed using the enhanced Avian Reverse Tran-
scriptase (Sigma-Aldrich, USA) as per the manufacturer's 
instructions. The gene expression was analyzed using the 
7500 Fast Real-Time PCR instrument (Applied Biosys-
tems, Foster City, CA, USA). β-actin expression was used 
as the reference gene. The list of primers used for ampli-
fication is given in Table 1 (qRT-PCR).

Measurement of tissue cytokines (dot blot)

Dot blot was performed according to the manufacturer's 
instructions (Abcam, USA). Briefly, the tissue lysates 
and serum were incubated at 4 °C with the membrane 
overnight and washed with wash buffer (I and II) for 3× 
(5 min each). The biotin-conjugated cytokines (CINC-
2, CINC-3, CNTF, Fractalkine, GM-CSF, IFN-γ, IL-1α, 
IL-1β, IL-4, IL-6, IL-10, Leptin, LIX, MCP-1, MIP-3α, 
β-NGF, TIMP-1, TNF-α, and VEGF) were incubated with 
membrane overnight at 4 °C, washed with wash buffer 
I and II for 3× (5 min each), and incubated with HRP-
conjugated Streptavidin-coated into each well. After incu-
bation for 2 h at RT, they were washed 3× (5 min each) 
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again with wash buffer I and II before imaging with the 
ChemiDoc.

Measurement of tissue cytokine levels 
by multiplexing ELISA

ELISA assays (Procaratplex multiplex kit; Invitrogen, 
USA, and Millipore, USA) were used to measure the 
serum and tissue cytokine levels. The following major pro-
and anti-inflammatory cytokines from serum and tissue 
lysates (Soleus muscle) were analyzed: TNF-α, monocyte 

chemotactic protein 1 (MCP-1; systemic name CCL2), IL-6, 
GM-CSF, IL-18, IFN-γ, Leptin, and VEGF were measured 
using a multiplex map (Millipore, USA). IL-1β, IL-10, IL-12 
p70, IL-13, IL-4, IP-10, TNFα, and TGF-β were analyzed 
by ELISA using the Procaratplex multiplex kit (Invitrogen, 
USA). All the multiplexing assays were performed at the 
end of 7 weeks post-3rd P-MSCs injection as per the manu-
facturer's instructions.

Glucose transport assay

Glucose transport was assessed in the skeletal muscle tis-
sue using glucose analog, 2-deoxyglucose, as described 
previously [40]. At the end of 7 weeks, skeletal muscle tis-
sue (soleus muscle) was dissected under sterile conditions 
and stimulated with insulin for 50 min and then incubated 
in Krebs–Ringer-bicarbonate (KRB) buffer containing 
2-NBDG. After incubation, the assay was terminated with 
ice-cold KRB buffer, and subsequently, uptake was meas-
ured by a flow cytometer. The control sample, which did not 
have the 2-NBDG, was used to set the flow cytometer com-
pensation and gate parameters. Each experiment was per-
formed in triplicates at the end of 7 weeks post-3rd P-MSCs 
injection and was averaged for the study.

Measurement of hexokinase and pyruvate kinase 
activity

The Hexokinase assay was performed as described previ-
ously [41]. Briefly, 20 µg of fresh tissue lysate (soleus mus-
cle) was added to 1 ml of reaction buffer for hexokinase 
(50 mM Tris HCl (Sigma-Aldrich), pH 7.5, 10 mM MgCl2 
(Sigma-Aldrich), 0.6 mM ATP (Sigma-Aldrich), 100 mM 
glucose (Sigma-Aldrich), 0.2 mM NADP + (Sigma-Aldrich), 
and 0.1 units of glucose-6-phosphate dehydrogenase (Sigma-
Aldrich)). Ten units of glyceraldehyde-3-phosphate dehy-
drogenase (Sigma-Aldrich) per ml were added for analyz-
ing the Hexokinase activity. The Pyruvate kinase assay was 
performed as previously described [41]. Briefly, 20 µg of 
fresh tissue lysate (soleus muscle) was added to 1 ml of reac-
tion buffer for pyruvate kinase (50 mM Tris HCl (Sigma-
Aldrich), pH 7.5, 5 mM MgCl2 (Sigma-Aldrich), 5 mM ATP 
(Sigma-Aldrich), 0.2 mM NADH (Sigma-Aldrich) 100 mM 
KCl (Sigma-Aldrich), 5 mM Na2HPO4 (Sigma-Aldrich), 
5 mM MgCl2 (Sigma-Aldrich), 0.01 mM AMP (Sigma-
Aldrich), 5 mM fructose-6-phosphate (Sigma-Aldrich), 5 
units of triosephosphate isomerase (Sigma-Aldrich) per ml, 
and 1 unit of aldolase (Sigma-Aldrich) per ml was added to 
check the pyruvate kinase activity. A negative and positive 
control has been included without tissue lysate and with 0.05 
units of hexokinase and pyruvate kinase in both the assays. 
Enzyme activities were measured and represented as the 

Table 1   Primers used for amplification

RAT F Primer CXCL2 AGG​GTA​CAG​GGG​TTG​TTG​TG
RAT R Primer CXCL2 TTT​GGA​CGA​TCC​TCT​GAA​CC
RAT F Primer CINC-2 CAC​TGC​TTC​TGC​TGC​TTC​TG
RAT R Primer CINC-2 TGA​CTT​CTG​TCT​GGG​TGC​AG
RAT F Primer CTNF CAC​CCC​AAC​TGA​AGG​TGA​CT
RAT R Primer CTNF ACC​TTC​AAG​CCC​CAT​AGC​TT
RAT F Primer Fractalkine CCA​AGC​AGA​ATG​TTG​GGT​CT
RAT R Primer Fractalkine GGC​ATG​AAT​GGG​TTC​CTC​TA
RAT F Primer IL-1α GCA​AAG​CCT​AGT​GGA​ACC​AG
RAT R Primer IL-1α GCA​GAA​GGT​GCA​CAG​TGA​GA
RAT F Primer IL-1 β AGG​CTT​CCT​TGT​GCA​AGT​GT
RAT R Primer IL-β TGA​GTG​ACA​CTG​CCT​TCC​TG
RAT F Primer IL-10 GGG​AAG​CAA​CTG​AAA​CTT​CG
RAT R Primer IL-10 GCT​TTC​GAG​ACT​GGA​AGT​GG
RAT F Primer LIX CGC​TAA​TTT​GGA​GGT​GAT​CC
RAT R Primer LIX AGT​GCA​TTC​CGC​TTT​GTT​TT
RAT F Primer Leptin GAG​ACC​TCC​TCC​ATC​TGC​TG
RAT R Primer Leptin CTC​AGC​ATT​CAG​GGC​TAA​GG
RAT F Primer Adiponectin AAT​CCT​GCC​CAG​TCA​TGA​AG
RAT R Primer Adiponectin TCT​CCA​GGA​GTG​CCA​TCT​CT
RAT F Primer TNF α AGA​TGT​GGA​ACT​GGC​AGA​GG
RAT R Primer TNF α CCC​ATT​TGG​GAA​CTT​CTC​CT
RAT F Primer IL-6 CCG​GAG​AGG​AGA​CTT​CAC​AG
RAT R Primer IL-6 ACA​GTG​CAT​CAT​CGC​TGT​TC
RAT F Primer Beta-actin AGC​CAT​GTA​CGT​AGC​CAT​CC
RAT R Primer Beta-actin CTC​TCA​GCT​GTG​GTG​GTG​AA
RAT F Primer IL-12b ACC​CTC​ACC​TGT​GAC​AGT​CC
RAT R Primer IL-12b TTC​TTG​TGG​AGC​AGC​AGA​TG
RAT F Primer IL-12a AGC​CAT​GTA​CGT​AGC​CAT​CC
RAT R Primer IL-12a CTC​TCA​GCT​GTG​GTG​GTG​AA
RAT F Primer VEGF GCC​CAT​GAA​GTG​GTG​AAG​TT
RAT R Primer VEGF ACT​CCA​GGG​CTT​CAT​CAT​TG
RAT F primer GM-CSF TCC​TAA​ATG​ACA​TGC​GTG​CT
RAT R Primer GM-CSF GCC​ATT​GAG​TTT​GGT​GAG​GT
RAT F Primer MCP-1 ATG​CAG​TTA​ATG​CCC​CAC​TC
RAT R Primer MCP-1 TTC​CTT​ATT​GGG​GTC​AGC​AC
RAT F Primer TGF-β GCA​ACT​TGG​AGG​AGA​ACT​GC
RAT R Primer TGF-β GTC​AGA​GGC​TCC​AGG​TCT​TG



Human placental mesenchymal stromal cell therapy restores the cytokine efflux and insulin…

1 3

Fig. 1   Morphology, characterization of placental-derived mesenchy-
mal stromal cells in primary cultures. A, B Representative confo-
cal images of human P-MSCs stained for CD133 and Stro-1 stromal 
cell markers. The nuclei were stained with DAPI at 100 µM. C Flow 
cytometer histogram of human P-MSCs stained for CD90, CD105, 

CD73, and CD34. D Representative microscopic images of human 
P-MSCs showing the Oil red, Alcian blue, and Alizarin Red staining, 
which are markers for adipogenic, chondrogenic, and osteogenic dif-
ferentiation at 50 µM
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change in absorbance/min, calculated using a linear portion 
of the obtained curve.

Western blotting analysis (insulin signaling 
pathway)

Western blotting was performed as described previously 
[42]. The soleus muscle tissues were homogenized at the 
end of 7 weeks post-3rd P-MSCs injection. 1 X RIPA buffer 
containing 150 mM sodium chloride, 1% Nonidet P-40, 
0.5% sodium deoxycholate, 0.1% SDS (sodium dodecyl sul-
fate), 50 mM Tris (pH 8.0), and protease inhibitor (Pierce) 
was used for homogenization. Proteins were separated by 
SDS-PAGE, immunoblotted with indicated antibodies, and 
imaged by ChemiDoc. The tissue lysates (40 μg protein/
lane) were briefly resolved by SDS-PAGE and transferred 
to PVDF membranes. Membranes were blocked for at least 
1 h. with 4% (w/v) skim milk powder in Tris-buffered saline 
with 0.1% Tween 20 (TBST). The membranes were incu-
bated overnight at 4 °C with the following primary anti-
bodies: anti-β-actin (1:1000, mouse monoclonal, pierce), 
PI3K-α (1:1000, rabbit polyclonal, CST), PI3K-β (1:1000, 
rabbit polyclonal, CST), PI3K-γ (1:1000, rabbit polyclonal, 
CST), anti-AKT (1:1000, mouse monoclonal, CST), anti-
P-Ser 473 AKT (1:1000, mouse monoclonal, CST), anti-
P-Thr 308 AKT (1:1000, mouse monoclonal CST), anti-
IRS-1 (1:1000, mouse monoclonal, CST), anti-P-Ser 307 
IRS1 (1:1000, mouse monoclonal, CST), and anti-Glut4 
(1:1000, mouse monoclonal, CST). Membranes were then 
washed three times for 15 min with TBST, and incubated 
for 1 h at room temperature with the respective secondary 
antibodies diluted 1:10,000 in 5% (w/v) skim milk powder 
in TBST. The membranes were rewashed three times, 15 min 
each with TBST, before imaging with the ChemiDoc G-Box 
(Syngene International limited). All the gels/blots used in 
the pictures complied with the digital image and integrity 
policies.

Statistical analysis

The results represent the mean of 6 rats per group. The "p" 
values were calculated using the two-way ANOVA for nor-
mally distributed data and the multiple comparison test. Sta-
tistical analysis was done using GraphPad Prism (Ver 8.0). 
Heatmaps were plotted using GraphPad Prism.

Results

Characterization and differentiation 
of mesenchymal stromal cells from human placenta 
(P‑MSCs)

CD-133 expression is associated with stem cells, regen-
eration, and differentiation. CD-133 is one of the key bio-
markers for the isolation and characterization of stem cells 
(Fig. 1A) [43] CD-133-positive cells isolated from cord 
blood have been studied for tissue repair both in clini-
cal and animal model systems [44, 45]. The expression 
of Stro-1 (Fig. 1B) is a characteristic feature of imma-
ture precursor cells, and has been used for MSCs’ isola-
tion and identification from the umbilical cord and bone 
marrow tissue [46]. Koyama et al. have demonstrated that 
human synovial fluid expressed Stro-1 cells were capa-
ble of differentiating into several cell types, including 
osteoblasts, chondrocytes, and adipocytes in vitro [47]. 
Thus, we performed CD-133 and Stro-1 immunostaining 
of the human P-MSCs to confirm their multipotent lineage 
capability. Also, these cells stained positive for surface 
markers CD73, CD90, CD105, and stained negative for 
CD34 (Fig. 1C). To identify the multipotential ability of 
human P-MSCs, we performed adipogenic, chondrogenic, 
and osteogenic as described in the section “Materials and 
methods.” The human P-MSCs were able to differentiate 
into adipogenic as indicated by Oil red O, chondrogenic 
as indicated by the positive staining with Alcian blue, and 
Osteogenic by Alizarin Red, respectively (Fig. 1D).

Human P‑MSCs therapy leads to peripheral blood 
glucose clearance in WNIN/GR‑Ob rats

To understand the beneficial effect of P-MSCs in clear-
ing the peripheral blood glucose and restoration of insulin 
signaling in obese conditions. Our study showed that the 
WNIN/GR-Ob rats treated with P-MSCs are associated 
with no changes in their body weights (Fig. 2A), but there 
was an increase in the overall muscle weight (Fig. 2B), 
after the P-MSCs injection in the WNIN/GR-Ob rats when 
compared with the WNIN/GR-Ob Control rats.

Fig. 2   Human placental—MSCs normalize hyperglycemia and insu-
lin sensitivity in Ob-T2D rats. A Line diagram showing the body-
weight of WNIN/Control and Ob-T2D rats during the course of the 
experiment. B Bar diagram indicating the total muscle weights of 
rats with and without P-MSCs injection. C, D Line diagram show-
ing the glucose concentration in the peripheral blood of WNIN/Con-
trol and Ob-T2D rats, before and after the human P-MSCs injection. 
E Bar diagram indicating the levels of Insulin in WNIN/Control and 
Ob-T2D rats before and after the P-MSCs injection. F Bar diagram 
indicating HOMA-IR levels in WNIN/Control and Ob-T2D rats with 
and without human P-MSCs injection. G Total cholesterol, LDL, 
HDL, and VLDL levels in the blood of WNIN/Control and Ob-T2D 
rats before and after the human P-MSCs injection. Statistical analyses 
were performed between the control and the human P-MSCs injected 
groups, using two-way ANOVA comparing the WNIN/Control and 
Ob-T2D rats (*p < 0.05). Error bars represent one standard deviation 
from the mean. n = 6 rats per group
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Next, to understand the role of P-MSCs in clearing the 
peripheral blood glucose and restoration of insulin utili-
zation in WNIN/GR-Ob rats, we performed the oral glu-
cose tolerance test (OGTT) assay, before and after human 
P-MSCs injection, and compared it with the WNIN/Con-
trol rats. As shown previously [6], we also observed that 
the WNIN/GR-Ob rats showed decreased glucose toler-
ance, when compared to the WNIN/Control rats (Fig. 2C, 
D). OGTT assay using the peripheral blood indicated that 
P-MSCs treatment improved the glucose utilization in 
WNIN/GR-Ob rats, in comparison to the WNIN/Control 
rats (Fig. 2D). In addition, we have also observed that 
the WNIN/GR-Ob rats, in response to P-MSCs injection, 
showed a significant decrease in the serum insulin lev-
els (Fig. 2E). "HOMA-IR" analysis is a widely accepted 
methodology for measuring IR [48]. We show that WNIN/
GR-Ob rats have a 1.09-fold decrease in the HOMA-IR 
levels, compared to WNIN/GR-Ob Control rats, and a sev-
enfold increase in the HOMA-IR levels when compared to 
the WNIN/control rats (Fig. 2F) is showing a similar trend 
as reported previously from various studies. [2, 6, 49]. 
Furthermore, in response to P-MSCs treatment, we also 
observed decreased total cholesterol, total triglycerides, 
LDL, HDL, and VLDL levels in the serum isolated from 
the WNIN/GR-Ob rats (Fig. 2G). These data confirm that 
de novo, human P-MSCs injection increases insulin sen-
sitivity and enhances glucose utilization under obesogenic 
milieu.

Human P‑MSCs treatment remodels the cytokine 
expression in the WNIN/GR‑Ob rats in vivo

Next, we studied whether the human P-MSCs injection also 
leads to cytokine remodelling. We observed that human 
P-MSCs injection into WNIN/GR-Ob rats had restored both 
the pro-and anti-inflammatory cytokines, as well as Lep-
tin expression to the extent seen in the WNIN/Control rats 
(Fig. 3A). We also reconfirmed the above observations that 

the P-MSCs injection restores cytokine profile in the WNIN/
GR-Ob rats as analyzed by Multiplex-ELISA (Fig. 3B, C). 
Note that this cytokine remodelling in WNIN/GR-Ob rats 
occurs at the transcriptional level, since we observed an 
alteration of these cytokines at their mRNA expression lev-
els, in response to P-MSCs therapy (Fig. 3D).

Human P‑MSCs’ treatment restores glucose uptake 
in the skeletal muscle tissues of WNIN/GR‑Ob rats 
in vivo

Next, we analyzed whether the decrease in inflammatory 
milieu observed in the WNIN/GR-Ob rats to human P-MSC 
therapy has any impact on the glucose uptake capacity 
of the skeletal muscles. For this, we first isolated soleus 
muscle [40] from WNIN/GR-Ob rats and WNIN/Control 
rats and compared the respective glucose uptake capac-
ity using 2-deoxy-2-[(7-nitro-2,1,3-benzoxadiazol-4-yl) 
amino]-d-glucose (2-NBDG) assay. Soleus muscle of the 
WNIN/GR-Ob rats had less glucose uptake capacity, com-
pared to the WNIN/Control rats (Fig. 4A). Interestingly 
P-MSCs injection was more effective to WNIN/GR-Ob rats 
to re-establish glucose uptake ability of the soleus muscle 
(Fig. 4A). Corroborating with this data, we also observed an 
increase in the activity of Hexokinase and Pyruvate Kinase 
enzymes in the soleus muscle of WNIN/GR-Ob rats, com-
pared to WNIN/Control rats (Fig. 4B).

Human P‑ MSCs therapy up‑regulates insulin 
signaling and restores the Glut4 expression 
in skeletal muscle tissues under obesogenic milieu 
in vivo

Next, we investigated the insulin signaling pathway to delin-
eate the mechanism for induced glucose uptake in the skel-
etal muscle of WNIN/GR-Ob rats in response to P-MSCs 
therapy. Immunoblotting analysis showed that P-MSCs’ 
treatment upregulated the Ser612-IRS-1, Thr308-Akt, and 
Ser473-Akt phosphorylation in the skeletal muscle tissues 
of WNIN/GR-Ob rats' compared to WNIN/Control rats 
(Fig. 4C, D). Similarly, P-MSCs therapy in WNIN/GR-Ob 
rats had upregulated the expression of both p85α and p85β, 
which was not observed in the WNIN/Control rats (Fig. 4C, 
D). Interestingly, human P-MSCs injection into the WNIN/
GR-Ob rats had restored the expression of p100γ in the 
skeletal muscle in WNIN/GR-Ob rats but not in WNIN/
Control rats (Fig. 4C, D). Note that P-MSCs treatment sig-
nificantly upregulated the GLUT4 expression in WNIN/
GR-Ob rat's skeletal muscle tissues, which is comparable 
to that of untreated WNIN/Control rat tissues (Fig. 4C, D). 
These findings suggest that the increased glucose uptake 
in the WNIN/GR-Ob rats in the skeletal muscles is due to 

Fig. 3   Human P-MSCs treatment re-establishes the cytokine expres-
sion in the skeletal muscles of Ob-T2D rats in vivo. A Dot blot heat 
maps showing the cytokine concentrations in each of the conditions, 
the intensity of the colors assigned as the mean of 6 animals from 
each group indicate the relative scale of expression, ranging from 0 
to 40. B, C Bar diagram showing the absolute concentration of pro-
and anti-inflammatory cytokines in the skeletal muscle of WNIN/
Control and Ob-T2D rats, with and without human P-MSCs injec-
tion, as measured by the Luminex system. D Heat maps are shown 
as the mean of 6 animals from each group and the relative mRNA 
fold change in the skeletal muscle of WNIN/Control and Ob-T2D 
rats with and without human P-MSCs injection. Statistical analyses 
were performed between the control and the human P-MSCs injected 
groups, using two-way ANOVA comparing the WNIN/Control and 
Ob-T2D rats (*p < 0.05). Error bars represent one standard deviation 
from the mean. n = 6 rats per group
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enhanced PI3K-Akt signaling-mediated Glut4 upregulation 
in response to P-MSCs injection.

Discussion

During T2D, there is a high glucose accumulation in the 
peripheral blood due to dysregulation of insulin signaling 
in the skeletal muscle [50], which accounts for nearly 70% 
of insulin-dependent glucose disposal [51]. We have shown 
that an intramuscular injection of P-MSCs isolated from the 
human placenta reduced obesity improved IR and glucose 
homeostasis in the adipose tissue of WNIN/GR-Ob obese 
rats [32]. In the present study, we further demonstrate that 
intramuscular injection of P-MSCs to WNIN/GR-Ob rats 
sensitizes their skeletal muscle tissues to the endogenous 
insulin and effectively counteracts the glucose imbalance, 
as evidenced by the normalization of HOMA-IR and OGTT 
levels.

We observed that the skeletal muscle of WNIN/GR-Ob 
rats presented with low Glut4 expression vis-a-vis leading 
to lower glucose uptake. Interestingly, P-MSCs injection 
to WNIN/GR-Ob rats increased glucose uptake by induc-
ing the Glut4 expression in the soleus muscle in addition to 
enhanced glucose utilization in the skeletal muscle as evi-
denced by the increased activity of Hexokinase and Pyruvate 
Kinase enzymes. Finally, we associated these changes to 
glucose uptake and utilization, with normalization in the 
Insulin signaling pathway in the skeletal muscle of WNIN/
GR-Ob rats which was promising with P-MSCs therapy.

Cytokines play a crucial role in intracellular cell sign-
aling and function in paracrine and endocrine patterns as 
immunomodulating agents, modifying the balance between 
humoral- and cell-mediated immunity [52, 53]. The 
cytokines are responsible for attracting the macrophages 
into the surrounding milieu, causing inflammation and IR in 
obese patients [54]. Following the published literature [52, 

53], MSCs of perinatal origin (P-MSCs) blunt the inflam-
matory response in target tissues. This suggests that par-
acrine secretions of MSCs and their cytokines/interleukin 
profiles (IL-6, -7, -8, -11, -12, -14, -15, -27, LIF, M-CSF, 
in addition to IL-10 and TGF-β1) may play a crucial role in 
overcoming inflammatory responses. We also observed an 
increased expression of pro-inflammatory cytokines, such as 
IL-6, IL-1β, and TNF-α, and a decreased expression of anti-
inflammatory cytokines, such as IL-10, TGF-β, and IL-4, in 
the WNIN/GR-Ob rats. In the present study, we observed 
that the P-MSCs injection into the WNIN/GR-Ob rats had 
negated the expression of IL-6, TNF-α, and IL-7, -8, -11, 
-12, -14, -15, -27, LIF, M-CSF, in addition to IL-10 and 
TGF-β1 cytokines. This advocates the potential application 
of human P-MSCs for the treatment of Ob-T2D.

Ob-T2D leads to a total derangement of immune func-
tions, where both diet-induced and genetically modified 
obese animals show altered natural killer (NK) cell function 
in addition, to T-cell dysregulation [55]. Previously reported 
data with obese (WNIN/GR-Ob) rats showed an impaired 
innate immune response, i.e., increased ratio of CD4/CD8 
with a dysregulation in the humoral immunity like increased 
levels of IgG and IgM [56, 57] vis-a-vis a reduction in the 
Jak2 protein expression in the WNIN/GR-Ob rats [8]. These 
observations reinstate that WNIN/GR-Ob rats do present 
with altered immunity akin to obese subjects [8].

MSCs from promising adult stem cells in regenerative 
therapy and have been well documented for their plasticity 
and multipotent functions. [58]. Indeed, it has been shown in 
diabetic models that P-MSCs are known to blunt the inflam-
matory response and allow tissue remodeling after injury 
[59]. Furthermore, MSCs can also suppress immune activa-
tion when exposed to pro-inflammatory cytokines such as 
TNF-α, INF-γ, and IL-6. We believe that interventions with 
MSCs to repair/restore innate and humoral immunity of the 
Ob-T2D rats could be attributed to the potent immunomodu-
latory functions of MSCs [59].

In the animal models, MSC treatment demonstrated 
exciting therapeutic effects on glycemic control by restor-
ing islet function and ameliorating insulin resistance. Inter-
estingly, studies have shown that mesenchymal stem cell 
therapy had alleviated insulin resistance, via promoting the 
conversion of macrophages from classically activated M1 
macrophages (pro-inflammatory) into alternatively activated 
M2 macrophages (anti-inflammatory) [60, 61]. Recently, 
Chen et al., 2020 had showed that intramuscular injection 
of mesenchymal stem cells ameliorates high-fat-diet-induced 
diabetes and its complications, using the mice model [33]. 
Sun et al., 2017 showed that placental and umbilical cord-
derived mesenchymal stem cells had diminished insulin 
resistance by suppressing inflammasome-mediated inflam-
mation in T2D rats [62]. Also, our recently published study 
of Kotikalapudi et al., 2021 has shown the beneficial effects 

Fig. 4   Human P-MSCs therapy restores glucose uptake by upregu-
lating PI3K-Akt signaling in the skeletal muscle tissue of Ob-T2D 
rats in vivo. A FACS analysis showing 2-NBDG uptake in the skel-
etal muscle of WNIN/Control and WNIN/GR-Ob rats treated without 
or with human P-MSCs and in the absence and presence of insulin 
stimulation. A line diagram showing the relative 2-NBDG uptake 
was also shown. B Bar diagrams showing Hexokinase and Pyruvate 
Kinase activities in the skeletal muscle of WNIN/Control and Ob-
T2D rats with and without human P-MSCs injection. C Western blot 
analysis for the indicated proteins isolated from the skeletal mus-
cle tissues from WNIN/Control and Ob-T2D rats with and without 
human P-MSCs injection. D Bar diagram showing the relative phos-
phorylation of each protein normalized to the respective total protein 
level. Blots are representative of four independent experiments. Sta-
tistical analyses were performed using two-way ANOVA comparing 
the control group and the P-MSCs injected a group of WNIN/Control 
and WNIN/GR-Ob (Ob-T2D) rats (*p < 0.05). The error bars repre-
sent one standard deviation from the mean. n = 6 rats per group

◂



	 N. Kotikalapudi et al.

1 3

of MSCs to negate obesity-induced T2D metabolic altera-
tions [32]. Many studies (both pre-clinical and clinical trials) 
show increasing evidence of the therapeutic effectiveness 
of MSCs. However, many studies also provide evidence of 
low engraftment of MSCs due to their short-lived viability 
after injection [63, 64]. Mäkelä et al., 2015 have shown that 
MSCs after intravenous transplantation were trapped in the 
lungs, resulting in a reduction in the MSCs’ cell population 
at the target sites [65]. The method by which the cells are 
administered may be an important factor in their reaching 
their intended destination. Major advantages of intramuscu-
lar MSC delivery are: (a) extended time provided by dense 
muscle fibers that retain the MSCs in situ; (b) high vascular 
density that provides a conduit for the systemic release of 
MSC trophic factors; and (c) an abundance of tissue that pro-
vides for multiple injection sites [66]. In this study, P-MSCs 
injected via intramuscular route suppressed obesity-induced 
inflammation in insulin-targeting tissues. We presently do 
not know whether inflammation plays any role in P-MSC-
induced decrease in hyperglycemia and hyperlipidemia seen 
in WNIN/GR-Ob rats.

Clinical efficacy of MSCs treatment for T2D has shown 
some good outcomes, where a study conducted by Estrada 
et al., 2008 has demonstrated that combination therapy 
with BM-MSC and hyperbaric oxygen therapy (HOT) 
were effective and reduced their glycosylated hemoglobin 
(HbA1c) level in T2D patients followed up to 1 year [67]. 
Also, another two more studies conducted by Bhansali et al., 
2014 have shown that patients’ dependence on insulin was 
decreased with BM-MSC transplantation [68, 69]. Various 
other clinical studies [70–75] have also shown a decrease in 
the HOMA-IR after MSC transplantation; however, all these 
studies have employed intravenous or intrapancreatic injec-
tion of MSCs into the patients. Potential risks of MSCs treat-
ment via this route have to be considered, as the intravenous 
administration can cause pulmonary, upper respiratory, and 
immunological adverse events. In some studies, transient 
self-limiting nausea, vomiting, headache, abdominal pain, 
and upper respiratory tract infection occasionally occurred 
after the MSC transplantation. Currently, this is a cause of 
concern for the establishment and clinical application of the 
use of MSCs in the management of T2DM.

Based on our hypothesis, although subject to the limita-
tions of short-term rat models, we have been able to dem-
onstrate the functional response of P-MSCs in improving 
systemic and tissue inflammation, glucose tolerance, and 
enhancing insulin sensitivity in obese rats. These data do 
suggest that way forward applications of cellular thera-
pies with P-MSCs and can be explored in T2D. However, 
addressing the human diabetic subjects necessitates under-
standing several confounding factors like duration of T2D, 
insulin resistance, inflammation, as well as pancreatic beta 
exhaustion as modifiers of response. Therefore, requires 

more in-depth studies to delineate the potent beneficial func-
tions of P-MSCs to restore normoglycemia in human sub-
jects. Overall present study's findings using WNIN/GR-Ob 
rat open up newer avenues in the management strategy of 
obesity, diabetes, and allied complications.
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